AWS News Blog
Category: HAQM SageMaker
Next Generation SageMaker Notebooks – Now with Built-in Data Preparation, Real-Time Collaboration, and Notebook Automation
In 2019, we introduced HAQM SageMaker Studio, the first fully integrated development environment (IDE) for data science and machine learning (ML). SageMaker Studio gives you access to fully managed Jupyter Notebooks that integrate with purpose-built tools to perform all ML steps, from preparing data to training and debugging models, tracking experiments, deploying and monitoring models, […]
New – Share ML Models and Notebooks More Easily Within Your Organization with HAQM SageMaker JumpStart
HAQM SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. SageMaker JumpStart gives you access to built-in algorithms with pre-trained models from popular model hubs, pre-trained foundation models to help you perform tasks such as article summarization and image generation, and end-to-end solutions to solve common use cases. […]
AWS Machine Learning University New Educator Enablement Program to Build Diverse Talent for ML/AI Jobs
AWS Machine Learning University is now providing a free educator enablement program. This program provides faculty at community colleges, minority-serving institutions (MSIs), and historically Black colleges and universities (HBCUs) with the skills and resources to teach data analytics, artificial intelligence (AI), and machine learning (ML) concepts to build a diverse pipeline for in-demand jobs of […]
New — Introducing Support for Real-Time and Batch Inference in HAQM SageMaker Data Wrangler
To build machine learning models, machine learning engineers need to develop a data transformation pipeline to prepare the data. The process of designing this pipeline is time-consuming and requires a cross-team collaboration between machine learning engineers, data engineers, and data scientists to implement the data preparation pipeline into a production environment. The main objective of […]
New — HAQM SageMaker Data Wrangler Supports SaaS Applications as Data Sources
Data fuels machine learning. In machine learning, data preparation is the process of transforming raw data into a format that is suitable for further processing and analysis. The common process for data preparation starts with collecting data, then cleaning it, labeling it, and finally validating and visualizing it. Getting the data right with high quality […]
New ML Governance Tools for HAQM SageMaker – Simplify Access Control and Enhance Transparency Over Your ML Projects
As companies increasingly adopt machine learning (ML) for their business applications, they are looking for ways to improve governance of their ML projects with simplified access control and enhanced visibility across the ML lifecycle. A common challenge in that effort is managing the right set of user permissions across different groups and ML activities. For […]
Preview: Use HAQM SageMaker to Build, Train, and Deploy ML Models Using Geospatial Data
You use map apps every day to find your favorite restaurant or travel the fastest route using geospatial data. There are two types of geospatial data: vector data that uses two-dimensional geometries such as a building location (points), roads (lines), or land boundary (polygons), and raster data such as satellite and aerial images. Last year, […]
New – Redesigned UI for HAQM SageMaker Studio
Today, I’m excited to announce a new, redesigned user interface (UI) for HAQM SageMaker Studio. SageMaker Studio provides a single, web-based visual interface where you can perform all machine learning (ML) development steps with a comprehensive set of ML tools. For example, you can prepare data using SageMaker Data Wrangler, build ML models with fully […]