AWS Machine Learning Blog
Category: Customer Enablement
Automated claims processing at Xactware with machine learning on AWS
This blog post was co-authored, and includes an introduction, by Aaron Brunko, Senior Vice President, Claims Product at Xactware. Property insurance claims involving the valuation and replacement of personal belongings can be a painful process for everyone involved after a loss. From catastrophic events such as hurricanes, tornados, and wildfires, to theft and vandalism, claim […]
HawkEye 360 predicts vessel risk using the Deep Graph Library and HAQM Neptune
This post is co-written by Ian Avilez and Tim Pavlick from HawkEye 360. HawkEye 360 is a commercial radio frequency (RF) constellation, data, and analytics provider. Their signals of interest include very high frequency (VHF) push-to-talk radios, maritime radar systems, Automatic Identification System (AIS) beacons, emergency beacons, and more. The signals of interest library will […]
Detect defects in automotive parts with HAQM Lookout for Vision and HAQM SageMaker
According to a recent study, defective products cost industries over $2 billion from 2012–2017. Defect detection within manufacturing is an important business use case, especially in high-value product industries like the automotive industry. This allows for early diagnosis of anomalies to improve production line efficacy and product quality, and saves capital costs. Although advanced anomaly […]
How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1
February 9, 2024: HAQM Kinesis Data Firehose has been renamed to HAQM Data Firehose. Read the AWS What’s New post to learn more. The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software […]
Increase your machine learning success with AWS ML services and AWS Machine Learning Embark
This is a guest post from Mikael Graindorge, Sales Operations Leader at Thermo Fisher Scientific. In the life sciences industry, data is growing in abundance and is getting increasingly complex, which makes it challenging to use traditional analytics methodologies. At Thermo Fisher Scientific, our mission is to make the world healthier, cleaner, and safer, and […]
Bring your own container to project model accuracy drift with HAQM SageMaker Model Monitor
The world we live in is constantly changing, and so is the data that is collected to build models. One of the problems that is often seen in production environments is that the deployed model doesn’t behave the same way as it did during the training phase. This concept is generally called data drift or […]
Deploy variational autoencoders for anomaly detection with TensorFlow Serving on HAQM SageMaker
Anomaly detection is the process of identifying items, events, or occurrences that have different characteristics from the majority of the data. It has many applications in various fields, like fraud detection for credit cards, insurance, or healthcare; network intrusion detection for cybersecurity; KPI metrics monitoring for critical systems; and predictive maintenance for in-service equipment. There […]
Hyundai reduces ML model training time for autonomous driving models using HAQM SageMaker
Hyundai Motor Company, headquartered in Seoul, South Korea, is one of the largest car manufacturers in the world. They have been heavily investing human and material resources in the race to develop self-driving cars, also known as autonomous vehicles. One of the algorithms often used in autonomous driving is semantic segmentation, which is a task […]
Create a large-scale video driving dataset with detailed attributes using HAQM SageMaker Ground Truth
Do you ever wonder what goes behind bringing various levels of autonomy to vehicles? What the vehicle sees (perception) and how the vehicle predicts the actions of different agents in the scene (behavior prediction) are the first two steps in autonomous systems. In order for these steps to be successful, large-scale driving datasets are key. […]
Improve newspaper digitalization efficacy with a generic document segmentation tool using HAQM Textract
We are living in a digital age. Information that used to be spread by printouts is disseminated at unforeseen speeds through digital formats. In parallel to the inventions of new types of media, an increasing number of archives and libraries are trying to create digital repositories with new technologies. Digitization allows for preservation by creating […]