AWS Machine Learning Blog

Category: Advanced (300)

Visualisation of text and image embeddings

Implement serverless semantic search of image and live video with HAQM Titan Multimodal Embeddings

In today’s data-driven world, industries across various sectors are accumulating massive amounts of video data through cameras installed in their warehouses, clinics, roads, metro stations, stores, factories, or even private facilities. This video data holds immense potential for analysis and monitoring of incidents that may occur in these locations. From fire hazards to broken equipment, […]

Solution Architecture

Vitech uses HAQM Bedrock to revolutionize information access with AI-powered chatbot

This post is co-written with Murthy Palla and Madesh Subbanna from Vitech. Vitech is a global provider of cloud-centered benefit and investment administration software. Vitech helps group insurance, pension fund administration, and investment clients expand their offerings and capabilities, streamline their operations, and gain analytical insights. To serve their customers, Vitech maintains a repository of […]

Personalized image search weighted score

Enhance image search experiences with HAQM Personalize, HAQM OpenSearch Service, and HAQM Titan Multimodal Embeddings in HAQM Bedrock

A variety of different techniques have been used for returning images relevant to search queries. Historically, the idea of creating a joint embedding space to facilitate image captioning or text-to-image search has been of interest to machine learning (ML) practitioners and businesses for quite a while. Contrastive Language–Image Pre-training (CLIP) and Bootstrapping Language-Image Pre-training (BLIP) […]

Solution architecture

Generating fashion product descriptions by fine-tuning a vision-language model with SageMaker and HAQM Bedrock

This post shows you how to predict domain-specific product attributes from product images by fine-tuning a VLM on a fashion dataset using HAQM SageMaker, and then using HAQM Bedrock to generate product descriptions using the predicted attributes as input. So you can follow along, we’re sharing the code in a GitHub repository.

Create a multimodal assistant with advanced RAG and HAQM Bedrock

In this post, we present a new approach named multimodal RAG (mmRAG) to tackle those existing limitations in greater detail. The solution intends to address these limitations for practical generative artificial intelligence (AI) assistant use cases. Additionally, we examine potential solutions to enhance the capabilities of large language models (LLMs) and visual language models (VLMs) with advanced LangChain capabilities, enabling them to generate more comprehensive, coherent, and accurate outputs while effectively handling multimodal data

Efficient and cost-effective multi-tenant LoRA serving with HAQM SageMaker

In this post, we explore a solution that addresses these challenges head-on using LoRA serving with HAQM SageMaker. By using the new performance optimizations of LoRA techniques in SageMaker large model inference (LMI) containers along with inference components, we demonstrate how organizations can efficiently manage and serve their growing portfolio of fine-tuned models, while optimizing costs and providing seamless performance for their customers. The latest SageMaker LMI container offers unmerged-LoRA inference, sped up with our LMI-Dist inference engine and OpenAI style chat schema. To learn more about LMI, refer to LMI Starting Guide, LMI handlers Inference API Schema, and Chat Completions API Schema.

Build a serverless exam generator application from your own lecture content using HAQM Bedrock

Crafting new questions for exams and quizzes can be tedious and time-consuming for educators. The time required varies based on factors like subject matter, question types, experience level, and class level. Multiple-choice questions require substantial time to generate quality distractors and ensure a single unambiguous answer, and composing effective true-false questions demands careful effort to […]

Incorporate offline and online human – machine workflows into your generative AI applications on AWS

Recent advances in artificial intelligence have led to the emergence of generative AI that can produce human-like novel content such as images, text, and audio. These models are pre-trained on massive datasets and, to sometimes fine-tuned with smaller sets of more task specific data. An important aspect of developing effective generative AI application is Reinforcement […]

Transform customer engagement with no-code LLM fine-tuning using HAQM SageMaker Canvas and SageMaker JumpStart

Fine-tuning large language models (LLMs) creates tailored customer experiences that align with a brand’s unique voice. HAQM SageMaker Canvas and HAQM SageMaker JumpStart democratize this process, offering no-code solutions and pre-trained models that enable businesses to fine-tune LLMs without deep technical expertise, helping organizations move faster with fewer technical resources. SageMaker Canvas provides an intuitive […]

How Dialog Axiata used HAQM SageMaker to scale ML models in production with AI Factory and reduced customer churn within 3 months

The telecommunications industry is more competitive than ever before. With customers able to easily switch between providers, reducing customer churn is a crucial priority for telecom companies who want to stay ahead. To address this challenge, Dialog Axiata has pioneered a cutting-edge solution called the Home Broadband (HBB) Churn Prediction Model. This post explores the […]