AWS Machine Learning Blog

Category: HAQM Simple Storage Service (S3)

Solution Overview

Clario enhances the quality of the clinical trial documentation process with HAQM Bedrock

The collaboration between Clario and AWS demonstrated the potential of AWS AI and machine learning (AI/ML) services and generative AI models, such as Anthropic’s Claude, to streamline document generation processes in the life sciences industry and, specifically, for complicated clinical trial processes.

How Pattern PXM’s Content Brief is driving conversion on ecommerce marketplaces using AI

Pattern is a leader in ecommerce acceleration, helping brands navigate the complexities of selling on marketplaces and achieve profitable growth through a combination of proprietary technology and on-demand expertise. In this post, we share how Pattern uses AWS services to process trillions of data points to deliver actionable insights, optimizing product listings across multiple services.

How Rocket Companies modernized their data science solution on AWS

In this post, we share how we modernized Rocket Companies’ data science solution on AWS to increase the speed to delivery from eight weeks to under one hour, improve operational stability and support by reducing incident tickets by over 99% in 18 months, power 10 million automated data science and AI decisions made daily, and provide a seamless data science development experience.

How Formula 1® uses generative AI to accelerate race-day issue resolution

In this post, we explain how F1 and AWS have developed a root cause analysis (RCA) assistant powered by HAQM Bedrock to reduce manual intervention and accelerate the resolution of recurrent operational issues during races from weeks to minutes. The RCA assistant enables the F1 team to spend more time on innovation and improving its services, ultimately delivering an exceptional experience for fans and partners. The successful collaboration between F1 and AWS showcases the transformative potential of generative AI in empowering teams to accomplish more in less time.

The following diagram illustrates the workflow of patch-level prediction tasks on a WSI

Accelerate digital pathology slide annotation workflows on AWS using H-optimus-0

In this post, we demonstrate how to use H-optimus-0 for two common digital pathology tasks: patch-level analysis for detailed tissue examination, and slide-level analysis for broader diagnostic assessment. Through practical examples, we show you how to adapt this FM to these specific use cases while optimizing computational resources.

Embodied AI Chess with HAQM Bedrock

In this post, we demonstrate Embodied AI Chess with HAQM Bedrock, bringing a new dimension to traditional chess through generative AI capabilities. Our setup features a smart chess board that can detect moves in real time, paired with two robotic arms executing those moves. Each arm is controlled by different FMs—base or custom. This physical implementation allows you to observe and experiment with how different generative AI models approach complex gaming strategies in real-world chess matches.

How Crexi achieved ML models deployment on AWS at scale and boosted efficiency

Commercial Real Estate Exchange, Inc. (Crexi), is a digital marketplace and platform designed to streamline commercial real estate transactions. In this post, we will review how Crexi achieved its business needs and developed a versatile and powerful framework for AI/ML pipeline creation and deployment. This customizable and scalable solution allows its ML models to be efficiently deployed and managed to meet diverse project requirements.

Multilingual content processing using HAQM Bedrock and HAQM A2I

This post outlines a custom multilingual document extraction and content assessment framework using a combination of Anthropic’s Claude 3 on HAQM Bedrock and HAQM A2I to incorporate human-in-the-loop capabilities.

Build a reverse image search engine with HAQM Titan Multimodal Embeddings in HAQM Bedrock and AWS managed services

In this post, you will learn how to extract key objects from image queries using HAQM Rekognition and build a reverse image search engine using HAQM Titan Multimodal Embeddings from HAQM Bedrock in combination with HAQM OpenSearch Serverless Service.