AWS Machine Learning Blog

Tag: HAQM SageMaker

Harvesting success using HAQM SageMaker to power Bayer’s digital farming unit

By the year 2050, our planet will need to feed ten billion people. We can’t expand the earth to create more agricultural land, so the solution to growing more food is to make agriculture more productive and less resource-dependent. In other words, there is no room for crop losses or resource waste. Bayer is using […]

Financially empowering Generation Z with behavioral economics, banking, and AWS machine learning

This is a guest blog post by Dante Monaldo, co-founder and CTO of Pluto Money Pluto Money, a San Francisco-based startup, is a free money management app that combines banking, behavioral economics, and machine learning (ML) to guide Generation Z towards their financial goals in college and beyond. We’re building the first mobile bank designed […]

Thoughts on Recent Research Paper and Associated Article on HAQM Rekognition

A research paper and associated article published yesterday made claims about the accuracy of HAQM Rekognition. We welcome feedback, and indeed get feedback from folks all the time, but this research paper and article are misleading and draw false conclusions. This blog post shares details which we hope will help clarify several ‎misperceptions and inaccuracies. […]

Ensure consistency in data processing code between training and inference in HAQM SageMaker

In this blog post, we’ll show you how to deploy an inference pipeline consisting of pre-processing using SparkML, inferences using XGBoost, and post-processing using SparkML. For this particular example, we are using the Car Evaluation Data Set from UCI’s Machine Learning Repository and training an XGBoost model to predict the condition of a car (i.e. unacceptable, acceptable, good, or very good).

HAQM SageMaker adds Scikit-Learn support

HAQM SageMaker now comes pre-configured with the Scikit-Learn machine learning library in a Docker container. Scikit-Learn is popular choice for data scientists and developers because it provides efficient tools for data analysis and high quality implementations of popular machine learning algorithms through a consistent Python interface and well documented APIs. Scikit-Learn executes quickly and can […]

Run SQL queries from your SageMaker notebooks using HAQM Athena

The volume, velocity and variety of data has been ever increasing since the advent of the internet. The problem many enterprises face is managing this “big data” and trying to make sense out of it to yield the most desirable outcome. Siloes in enterprises, continuous ingestion of data in numerous formats, and the ever-changing technology […]

Transfer learning for custom labels using a TensorFlow container and “bring your own algorithm” in HAQM SageMaker

Data scientists and developers can use the HAQM SageMaker fully managed machine learning service to build and train machine learning (ML) models, and then directly deploy them into a production-ready hosted environment. In this blog post we’ll show you  how to use HAQM SageMaker to do transfer learning using a TensorFlow container with our own […]