发布于: Dec 8, 2020

借助 HAQM Redshift ML,数据仓库用户(如数据分析师、数据库开发人员和数据科学家)可以使用熟悉的 SQL 命令创建、训练和部署机器学习 (ML) 模型。HAQM Redshift 是使用最广泛的云数据仓库。现在,借助 HAQM Redshift ML,您通过 SQL 即可利用 HAQM SageMaker(一个完全托管的机器学习服务),而无需迁移数据或学习新技能。

借助由 HAQM SageMaker 提供支持的 HAQM Redshift ML,您可以使用 SQL 语句从 HAQM Redshift 中的数据创建和训练机器学习模型,然后将这些模型用于使用案例,例如直接在查询和报告中进行流失预测和欺诈风险评分。HAQM Redshift ML 使用 HAQM SageMaker Autopilot 根据训练数据自动发现并优化最佳模型。SageMaker Autopilot 从最佳回归模型、二进制模型或多类分类和线性模型中进行选择。

或者,您也可以选择模型类型(如 Xtreme 梯度提升树 (XGBoost)、问题类型(如回归或分类)以及预处理器或超参数。HAQM Redshift ML 使用您的参数在 HAQM Redshift 数据仓库中构建、训练和部署模型。您可以使用 SQL 查询从这些经过训练的模型中获取预测,就像调用用户定义的函数 (UDF) 一样,并可以利用 HAQM Redshift 的所有优势,包括大规模并行处理能力。

HAQM Redshift ML 利用您现有的集群资源进行预测,因此您无需额外支付 HAQM Redshift 费用。创建或使用模型无需额外支付 HAQM Redshift 费用;由于可以在 HAQM Redshift 集群中进行本地预测,因此无需额外付费,除非需要调整集群大小。HAQM Redshift ML 使用 HAQM SageMaker 训练模型时,需要额外支付相关费用。请查看 Redshift 定价页面,获取详细信息。

Redshift ML 预览版已在下列区域推出:美国东部(俄亥俄)、美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、美国西部(旧金山)、加拿大(中部)、欧洲(法兰克福)、欧洲(爱尔兰)、欧洲(伦敦)、欧洲(巴黎)、欧洲(斯德哥尔摩)、亚太地区(香港)、亚太地区(东京)、亚太地区(新加坡)、亚太地区(悉尼)以及南美洲(圣保罗)。要开始使用并了解更多信息,请参阅预览版文档,或阅读本博客文章