亚马逊AWS官方博客

Category: Artificial Intelligence

准确率从 19% 提升至 95%!文本审核模型优化的三个阶段实践(下)

在之前的文章中,我们详细阐述了大模型文本审核模型优化项目的前两个阶段。第一阶段通过数据分析与初步优化,成功将误判率从 81.9% 降至 11.47%;第二阶段借助误判分类与提示词工程,进一步将误判率降低至 0%。然而,这些方法也暴露出系统复杂、维护成本高、扩展性差等问题。本文将聚焦于项目的第三阶段 —— 模型微调方案,介绍如何通过训练专门的文本分类模型,为审核系统打造更简洁、高效的长期解决方案。

准确率从 19% 提升至 95%!文本审核模型优化的三个阶段实践(上)

本文将分享一个真实案例,详细介绍如何通过数据分析、提示词工程和模型微调,将一个审核准确率仅 10% 的文本审核系统优化至接近 95% 的准确度。 该项目服务于一家经营海外聊天软件的公司,其用户注册审核环节存在严重的误判问题。我们通过三个阶段的系统性优化,成功解决了这一难题,并在实践过程中探索了不同技术路径的优劣,为类似场景提供了极具价值的参考方案。本文将重点聚焦前两个优化阶段,后续还会专门推出文章介绍第三阶段的模型微调方案。