Veröffentlicht am: Aug 15, 2018

Dieser Quick Start erstellt eine Data-Lake-Umgebung zur Entwicklung, Schulung und Bereitstellung von Machine-Learning-Modellen (ML mit HAQM SageMaker in der HAQM Web Services (AWS) Cloud. Die Bereitstellung dauert etwa 10-15 Minuten und nutzt AWS-Services wie HAQM Simple Storage Service (HAQM S3), HAQM API Gateway, HAQM Kinesis Data Streams und HAQM Kinesis Data Firehose.

HAQM SageMaker ist eine verwaltete Plattform für Entwickler und Datenwissenschaftler zur schnellen und einfachen Entwicklung, Schulung und Bereitstellung von ML-Modellen.  

Dieser Quick Start ermöglicht End-to-End-Datenwissenschaft für prädiktive und präskriptive Modelle, ohne komplexe ML-Hardwarecluster konfigurieren zu müssen.

Der Quick Start enthält eine Demo von Pariveda Solutions. Sie zeigt, wie Sie Rohdaten in HAQM S3 speichern, diese zur Aufnahme in HAQM SageMaker verwandeln, HAQM SageMaker zur Entwicklung eines Modells verwenden und das Modell in einer Prädiktions-API für HAQM Elastic Compute Cloud (HAQM EC2) Spot-Preisgestaltung hosten.

Dies sind Ihre ersten Schritte:

Weitere Referenzbereitstellungen für AWS Quick Start finden Sie in unserem Katalog.

Quick Starts sind automatisierte Referenzbereitstellungen, die anhand von AWS CloudFormation-Vorlagen und unter Einhaltung von AWS-Best-Practices Schlüsseltechnologien auf AWS implementieren. Dieser Quick Start endstand in Zusammenarbeit mit Pariveda Solutions, Inc.