Publié le: Aug 15, 2018

Ce Quick Start élabore un environnement Data Lake pour la création, l’entraînement et le déploiement de modèles de Machine Learning avec HAQM SageMaker sur le Cloud HAQM Web Services (AWS). Le déploiement prend environ 10 à 15 minutes et utilise des services AWS tels qu’HAQM Simple Storage Service (HAQM S3), HAQM API Gateway, HAQM Kinesis Data Streams et HAQM Kinesis Data Firehose.

HAQM SageMaker est une plate-forme gérée permettant aux développeurs et aux informaticiens de créer, de former et de déployer des modèles ML rapidement et facilement.  

Ce Quick Start permet des analyses de science des données de bout en bout pour la création de modèles prédictifs et prescriptifs, sans avoir à configurer des clusters matériels de ML complexes.

Ce Quick Start fournit une démo de Pariveda Solutions. Il montre comment stocker les données brutes dans HAQM S3, les transformer pour qu’elles soient consommées par HAQM SageMaker, comment utiliser HAQM SageMaker pour créer un modèle et comment héberger le modèle dans une API de prédiction pour la tarification Spot HAQM Elastic Compute Cloud (HAQM EC2).

Pour commencer :

Pour des déploiements de référence AWS Quick Start supplémentaires, consultez notre catalogue.

Les Quick Starts sont des déploiements de référence automatisés qui utilisent les modèles AWS CloudFormation pour déployer des technologies clés sur AWS, d'après les bonnes pratiques AWS. Ce Quick Start a été élaboré en collaboration avec Pariveda Solutions, Inc.