Publié le: Mar 24, 2020

Les AWS Deep Learning Containers sont désormais disponibles avec les dernières versions des frameworks Tensorflow 2.1.0 et 1.15.2, PyTorch 1.4.0 et MXNet 1.6.0. Cette publication inclut le kit HAQM SageMaker Python SDK aux conteneurs et les mises à jour du package HAQM SageMaker Experiments. HAQM SageMaker Experiments est une fonction intégrée à HAQM SageMaker qui vous permet d'organiser, de suivre, de comparer et d'évaluer les expériences de Machine Learning (ML) et les versions de modèle. Désormais, les conteneurs d'apprentissage TensorFlow 2.1.0 python3 incluent aussi SageMaker Debugger, qui permettent aux spécialistes des données d'enregistrer et d'inspecter les tenseurs de modèle pendant les tâches d'apprentissage.

Vous pouvez lancer les dernières versions du Deep Learning Container sur HAQM SageMaker, HAQM Elastic Kubernetes Service (HAQM EKS), Kubernetes autogérés sur HAQM EC2 et HAQM Elastic Container Service (HAQM ECS). Pour obtenir la liste complète des frameworks, des annonces de fin de vie des produits et des versions prises en charge par les conteneurs AWS Deep Learning Containers, consultez les notes de mise à jour de PyTorch 1.4.0, MXNet 1.6.0, TensorFlow 2.1.0 et TensorFlow 1.15.2.  

Pour en savoir plus, consultez AWS Marketplace. Vous trouverez une liste des conteneurs disponibles dans notre documentation. Démarrez rapidement avec les conteneurs AWS Deep Learning Containers grâce aux guides de démarrage rapide et aux didacticiels de niveaux débutant à avancé dans notre Guide du développeur. Vous pouvez également vous abonner à notre forum de discussion pour recevoir des annonces de lancement et poser vos questions.