HAQM Web Services ブログ

Category: HAQM Comprehend

AWS の生成 AI を活用してリテールインサイトを変革する

グローバルな高級ファッションブランドを擁し、世界中に 1,400 を超える小売店舗を展開し、18,000 人を超える従業員を抱える Tapestry は顧客体験の改善に役立つ豊富な情報を保有しているものの、それを十分に活用できているとは言えませんでした。そこで生成 AI エンジンを活用して、店舗従業員からのフィードバックを収集・分析するアプリケーション「Tell Rexy」と「Ask Rexy」を構築した結果、店舗オペレーション、在庫管理、顧客嗜好に関する前例のないインサイトを得ることができ、アプリケーションを従来より10倍早くリリースできるようになりました。

自然言語処理で e コマースサイトにおける検索精度を向上させ収益改善に繋げる

このブログでは、なぜ小売業者がキーワード検索の品質のために機会損失してしまうのかと、どのようにして HAQM Web Services( AWS )が自然言語処理( NLP )を用いて、 e コマース企業の収益向上を支援できるのかを述べます。

AWS SDK for SAP ABAP で請求書処理を自動化

このブログでは、AWS SDK for SAP ABAP を使用して、HAQM Textract、HAQM Translate、HAQM Comprehend、HAQM SNS などの AI/ML を搭載した AWS サービスと SAP を組み合わせ、ベンダーから受け取った請求書を自動的に処理して SAP に転記する方法を説明します。このソリューションは、PDF、文書、画像などのフォーマットをサポートしています。

製造業の拠点の在庫管理をサプライチェーンのデータレイクで改善

このブログシリーズでは 4 つのブログでこの課題に取り組みます。各々のブログで問題の解決のためのキーとなる要素を提示します。この最初のブログでは、分散したデータをまとめて正規化されたサプライチェーンのデータレイクをどのようにまとめ上げられるか、を説明します。次のブログでは、サプライチェーンのデジタルツインを使用してどのように物理的な製品フローを視覚的にモデル化するか、そして情報豊富なサプライチェーンのデータレイクにどうやって育て上げるかについて説明します。3 つ目のブログでは、デジタルツインの上位レイヤで、仕入れ計画のアプリケーションをどのように開発していくか、そして最後のブログでは LoRaWAN などの IoT 技術を使用して、広範囲に分散しデータ取得が難しい拠点からデータを取り、どのように自動的に、コスト効率よく、頻度が高く粒度の細かいデータを使用して、データレイクにデータを注入するかについて説明します。