게시된 날짜: Aug 15, 2018

이 Quick Start에서는 HAQM Web Services (AWS) 클라우드에서 HAQM SageMaker를 사용하여 기계 학습(ML) 모델을 구축, 교육 및 배포하기 위한 데이터 레이크 환경을 구축합니다. 배포에는 약 10-15 분이 소요되며 HAQM Simple Storage Service(HAQM S3), HAQM API 게이트웨이, HAQM Kinesis Data Streams 및 HAQM Kinesis Data Firehose와 같은 AWS 서비스가 사용됩니다.

HAQM SageMaker는 개발자와 데이터 과학자가 ML 모델을 빠르고 쉽게 구축, 교육 및 배포할 수 있는 관리형 플랫폼입니다.  

이 Quick Start는 복잡한 ML 하드웨어 클러스터를 구성할 필요 없이 예측 및 규범적 모델을 구축하기 위한 엔드 투 엔드 데이터 과학을 가능하게 합니다.

이 Quick Start에서는 Pariveda Solutions의 데모를 제공합니다. HAQM S3에 원시 데이터를 저장하고 이를 HAQM SageMaker에서 사용하기 위해 변환하고, HAQM SageMaker를 사용하여 모델을 구축하고 HAQM Elastic Compute Cloud(HAQM EC2) 스팟 요금을 위해 API에서 모델을 호스팅하는 방법을 보여줍니다.

시작하기:

추가적인 AWS Quick Start 레퍼런스 배포는 AWS의 카탈로그를 참조하십시오.

Quick Start는 AWS CloudFormation 템플릿을 사용하여 AWS 모범 사례에 따라 AWS에 주요 기술을 배포하는 자동화된 레퍼런스 배포입니다. 이 Quick Start는 Pariveda Solutions, Inc.와 공동으로 구축되었습니다.