Publicado: Aug 15, 2018

Este Quick Start cria um ambiente de data lake para construir, treinar e implantar modelos de machine learning (ML) com o HAQM SageMaker na nuvem da HAQM Web Services (AWS). A implantação demora cerca de 10 a 15 minutos e usa serviços da AWS como HAQM Simple Storage Service (HAQM S3), HAQM API Gateway, HAQM Kinesis Data Streams e HAQM Kinesis Data Firehose.

O HAQM SageMaker é uma plataforma gerenciada que possibilita que desenvolvedores e cientistas de dados criem, treinem e implantem modelos de ML com rapidez e facilidade.  

Esse Quick Start usa integralmente a ciência de dados para criar modelos preditivos e prescritivos, sem necessidade de configurar clusters de hardware de ML complexos.

O Quick Start oferece uma demonstração da Pariveda Solutions. Ele mostra como armazenar dados brutos no HAQM S3, transformar esses dados para consumo no HAQM SageMaker, usar o HAQM SageMaker para criar um modelo e hospedar o modelo em uma API de previsão para a definição de preço de instâncias spot no HAQM Elastic Compute Cloud (HAQM EC2).

Para começar a usar:

Para ver mais implantações de referência do Quick Start da AWS, consulte o nosso catálogo.

Os Quick Starts são implantações automatizadas de referência que usam modelos do AWS CloudFormation para implantar tecnologias essenciais na AWS de acordo com as melhores práticas da AWS. Esse Quick Start foi criado em colaboração com a Pariveda Solutions, Inc.