Publicado: Jun 26, 2023

Agora, o HAQM SageMaker Data Wrangler permite conexões diretas com o Snowflake para preparar dados e criar recursos destinados a machine learning (ML). O SageMaker Data Wrangler reduz de semanas para minutos o tempo de agregação e preparação de dados para ML no HAQM SageMaker Studio. 

A partir de hoje, os clientes podem usar o SageMaker Data Wrangler para se conectar ao Snowflake sem necessidade de integrar um armazenamento do HAQM Simple Storage Service (HAQM S3) ou gerenciar cópias de dados duráveis no S3. Esse recurso reduz o tempo gasto na configuração e simplifica a conexão entre o SageMaker Data Wrangler e o Snowflake, facilitando ajustes de escala para um grande número de usuários em toda a organização. No SageMaker Data Wrangler, você pode navegar em bancos de dados, tabelas, esquemas e dados de consultas do Snowflake, bem como unir dados de outras fontes de dados populares, como S3, HAQM Athena, HAQM Redshift, HAQM EMR e mais de 50 aplicações SaaS para criar conjuntos de dados adequados para ML. Em seguida, você pode avaliar rapidamente a qualidade dos dados, limpá-los e criar recursos com mais de 300 análises e transformações de dados incorporadas usando a interface visual do SageMaker Data Wrangler. Também é possível treinar e implantar modelos com o HAQM SageMaker Autopilot e automatizar o processo de preparação de dados em pipelines de engenharia, treinamento ou implantação de recursos usando o HAQM SageMaker Pipelines. 

As conexões diretas com o Snowflake estão disponíveis sem custo adicional em todas as regiões em que o SageMaker Data Wrangler é oferecido. Para saber mais, consulte este artigo no blog e a documentação técnica da AWS.